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A B S T R A C T   

Large-scale brain networks undergo functional reorganization over the course of the lifespan, with concurrent 
implications for cognition. Characterizing network connectivity during a task may provide complementary 
insight into cognitive development and aging, to that provided by resting-state. We assessed network background 
connectivity, which refers to connectivity that remains after task effects have been regressed out, during a visual 
memory-encoding task in a lifespan sample. More specifically we assessed the within- and between-network 
background connectivity of the default mode, salience, and frontoparietal networks. Within-network back-
ground connectivity of salience and frontoparietal networks differed between age groups, with late-life adults 
showing lower connectivity. We did not find an effect of age group in default mode network background con-
nectivity, contrary to previous findings using resting-state. However, default mode between-network background 
connectivity with salience and frontoparietal networks was greater in mid-life and late-life adults than in younger 
age groups. Overall, our findings in a lifespan sample are in line with previous observations of age-related 
network de-differentiation. However, the lack of age effect in default mode network background connectivity 
suggests that background connectivity indeed represents a complementary measure to resting-state connectivity, 
providing a differential glance of network connectivity during a particular state.   

1. Introduction 

Across both development and aging, large-scale brain networks un-
dergo functional reorganization with accompanying implications for 
cognition. The lifespan trajectories of higher cognitive networks appear 
to differ from those of primary sensory networks, in that the higher-level 
networks integrate later in development and are vulnerable to earlier 
decline in aging. Three such networks have been proposed to be espe-
cially integral to cognition (Bressler and Menon, 2010): the default 
mode network (DMN) facilitates internal processing; the frontoparietal 
network (FPN) is critical to external, goal-driven attention; and the 
salience network (SN) modulates the DMN and FPN as needed based on 
situational context. 

Higher cognition relies on the functional organization of these net-
works, both in terms of how a network node interacts with other nodes 
within a network (within-network connectivity), as well as how nodes of 
a given network interact with nodes of a different network (between- 
network connectivity). These networks have predominantly been 

investigated using resting-state functional magnetic resonance imaging 
(fMRI), in which functional neuroimaging data is collected in the 
absence of an external task. The most studied of these networks in terms 
of lifespan differences is the DMN. Strength of functional connectivity 
among nodes of the DMN increases from childhood through adolescence 
and into adulthood (Fair et al., 2008), particularly along the ante-
rior/posterior axis (Supekar et al., 2010). Conversely, DMN 
within-network connectivity decreases during aging (Andrews-Hanna 
et al., 2007; Damoiseaux et al., 2008), as does within-network connec-
tivity of the SN (Onoda et al., 2012) and the FPN (Campbell et al., 2012; 
Geerligs et al., 2015a). Functional reorganization also occurs at the level 
of interactions between networks, with cognitive networks becoming 
more functionally segregated during development (Gu et al., 2015). In 
older adults, between-network functional connectivity is increased 
relative to younger adults (Chan et al., 2014), resulting in reduced 
network segregation (Geerligs et al., 2015a; Song et al., 2014). Overall, 
within- and between-network resting-state connectivity, and more 
broadly network segregation, are altered in development and aging. 
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Beyond examining resting-state functional connectivity, i.e. in the 
absence of external stimulation, intrinsic networks are also connected 
during task performance (Smith et al., 2009). The analysis of back-
ground connectivity, by regressing out the effects of task stimuli, allows 
for examination of functional connectivity while the participant is per-
forming a task, without being inherently tied to regional co-activation to 
stimuli. Some work comparing younger and older adults using this 
technique suggests differential age group patterns between resting-state 
and background connectivity. Geerligs et al. (2015b) found that general 
trend of decreasing within-network connectivity in higher cognitive 
networks with age was especially pronounced during a movie task, 
while Grady et al. (2016) found differences between younger and older 
adults in DMN within-network resting-state connectivity but not in 
background connectivity. The age group differences identified in 
resting-state connectivity may therefore be state-dependent, and only 
provide a partial view of age-related differences in network connectiv-
ity. Characterizing age group differences in background connectivity 
can provide complementary insight into network functional reorgani-
zation across the lifespan and its association with cognition. 

Our objective is to characterize age-related patterns of within- and 
between-network connectivity strength in the default mode, salience, 
and frontoparietal networks in the context of a visual memory-encoding 
task, across age groups ranging from childhood to late-life adulthood. 
Based on previous work examining lifespan age group differences in 
resting-state connectivity (e.g. Geerligs et al., 2015a), we hypothesize 
there will be an effect of age on within-network connectivity strength in 
all three networks, with older adults showing reduced connectivity in all 
three networks relative to young adults, and children showing reduced 
DMN connectivity relative to young adults. We further hypothesize that 
there will be an effect of age on between-network connectivity strength, 
with older adults and children showing increased between-network 
connectivity relative to young adults. Finally, given the importance of 
the DMN to episodic memory encoding (Daselaar et al., 2004; Lustig 
et al., 2003), we hypothesize that within-DMN background connectivity 
will be associated with memory performance during a post-encoding 
recognition task. 

2. Methods 

2.1. Participants 

We recruited 162 healthy participants from the Metro Detroit com-
munity, from a younger sample with age range 8–25 years (n = 101, age 
15.13 ± 4.97 years (mean ± standard deviation), 51 females) and an 
older sample with age range 45–85 years (n = 61; age 67.89 ± 8.38 
years; 53 females). Data from a subset of the younger sample have 
previously been included in Tang et al. (2018), while data from a subset 
of the older sample have previously been included in Hayes et al. (2017). 
Detailed methods for data collection in each sample have been described 
in those articles; summaries of shared and distinct procedures for each 
group are provided below. All participants were right-handed (as 
assessed using the Edinburgh Handedness Inventory (Oldfield, 1971)), 
with no history of psychiatric or neurological disorders, and were free of 
MRI contraindications. Participants in the older sample had scores ≥ 25 
on the Mini-Mental State Examination (Folstein et al., 1975), which is 
considered within the cognitively normal range (Tombaugh and McIn-
tyre, 1992). Furthermore, all older participants performed in the 
cognitively normal range as determined by either clinical assessment or 
performance on Wechsler Memory Scale IV indices of no less than 1.5 
standard deviations below the normative mean (Drozdick et al., 2018). 
Older participants were additionally screened for current use of psy-
chotropic medications, uncontrolled medical conditions, brain injury 
and radiation or chemotherapy for cancer treatment, which served as 
additional exclusion criteria. All participants ages 18 and older provided 
informed consent, while for participants younger than 18 parental 
consent was obtained and participants provided written or oral assent. 

Studies were approved by the Wayne State University IRB. 
Data for two participants in the older sample were excluded as 

incomplete due to interrupted data collection. We excluded an addi-
tional 44 participants for neuroimaging data quality concerns such as 
excessive motion (see Table 1). Following these exclusions, a total of 116 
datasets were included (see Table 2 for demographics). 

To examine the effect of age we binned participants into five age 
groups in our analyses. Three age groups were defined in the younger 
sample: children (8–12 years), adolescents (13− 17), and young adults 
(18− 25); two age groups were defined in the older sample: mid-life 
adult (45− 64), and late-life adult (65− 85). Participant demographics 
across groups are presented in Table 2. Gender distribution significantly 
differed across age groups, χ2(4) = 9.97, p = 0.041, as the late-life adult 
sample had a larger proportion of female participants than the children. 
We assessed participant IQ in the younger sample using the Kaufman 
Brief Intelligence Test version 2 (Kaufman and Kaufman, 2014; scores 
were not available for one child and one adolescent) and in the older 
sample using the Wechsler Abbreviated Scale of Intelligence II 
(Wechsler, 2011). Group analysis showed that IQ significantly differed 
across age groups, F(4109) = 5.03, p = 0.001, as the late-life adults had 
lower IQ scores than the children and young adults. Mid-life adults also 
had lower IQ scores than the young adults. Gender was therefore 
included as a covariate in all regression models. IQ was included as a 
covariate in regression models with memory performance as the 
dependent variable. Mean framewise displacement and percent of 
outlier volumes were included as covariates in regression models with 
background connectivity as the dependent variable. 

2.2. Subsequent memory task 

A detailed description of the paradigm can be found in prior work 
(Pruitt et al., 2021). Briefly, participants were presented with indoor and 
outdoor visual scenes from a stimulus set used in prior studies (Chai 
et al., 2010, 2014; Ofen et al., 2007). They were instructed to memorize 
the scenes while making an indoor/outdoor judgment for each scene for 
preforming a subsequent recognition test. Participants then completed a 
postscan recognition test outside of the scanner, approximately 30 min 
after encoding, during which they were asked to indicate if each scene 
presented was “old” or “new” and if they were “sure” or “not sure” of this 
decision. 

2.3. Behavioral analysis 

Recognition responses were classified based on accuracy with 
respect to the encoding phase (correctly identifying scenes studied 
during encoding as old and foils as new) and confidence rating (high or 
low). Trials in which studied scenes were subsequently recognized with 
high confidence were labeled high-confidence hit trials (Hit-HC), 
whereas trials in which scenes were subsequently recognized with low 
confidence were labeled low-confidence hit trials (Hit-LC). Trials in 
which studied scenes were later classified as ‘new’ were labeled as miss 
trials (Miss) regardless of the confidence rating. Incorrect recognition of 

Table 1 
Participant exclusion criteria by age group.  

Exclusion Criteria Children Adolescents Young 
Adults 

Mid- 
life 

Late- 
life 

Recruited  38  31  32  25  36 
Outlier volumes >

20%  
2  0  0  2  4 

Motion spike > 1 
voxel  

17  2  2  3  11 

Encoding interrupted  0  0  0  2  0 
Grey matter atrophy 

(mask dropout)  
0  0  0  0  1 

Included  19  29  30  18  20  
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foil items as old with high confidence was labeled ‘high-confidence false 
alarm’. The proportion of high-confidence hit trials (out of the total 
number encoding trials) and the proportion of high confidence false 
alarm trials (out of the total number of foils) were used in calculation of 
recognition accuracy. Thus, recognition accuracy (pR-HC) was calcu-
lated by subtracting the proportion of high-confidence false alarms from 
the proportion of high-confidence hits (i.e., Hit-HC - FA-HC) as has been 
done in prior studies using this paradigm (Chai et al., 2014, 2010; Ofen 
et al., 2007). Low-confidence responses were not included in the 
calculation of recognition accuracy as such responses are less likely to 
indicate reliable discriminability between remembered items and foils 
(Park et al., 2013). 

2.4. MRI data acquisition 

Participants completed their scan session at the Wayne State Uni-
versity MR Research Facility at Harper University Hospital (Detroit, MI), 
on a 3-T Siemens Magnetom Verio scanner using a 32-channel Head 
Matrix coil. T1-weighted whole-brain anatomy images were acquired 
using a magnetization-prepared rapid gradient-echo sequence. Younger 
sample (ages 8–25): 192 sagittal slices, repetition time (TR) = 2200 ms, 
echo time (TE) = 4.26 ms, flip angle (FA) = 9◦, field of view (FOV) =
256 mm, 192 × 256 voxels, and voxel size = 1 mm × 0.5 mm × 1 mm. 
Older sample (ages 45–85): 176 slices, TR = 1680 ms, TE = 3.51 ms, FA 
= 9◦, FOV = 256 mm, voxel size = 0.7 mm × 0.7 mm × 1.3 mm). 

Functional images were acquired using a T2 * -weighted gradient- 
echo sequence (Younger sample: 30 slices parallel to the AC–PC plane, 
TR = 2000 ms, TE = 30 ms, FA = 90◦, voxel size = 3.1 mm × 3.1 mm ×
4 mm; older sample: 37 slices parallel to the AC-PC plane, TR = 2200 ms, 
TE = 30 ms, FA = 80◦, FOV = 220 mm, voxel size = 2.8 mm × 2.8 mm ×
2.8 mm). In the younger sample, the encoding task was completed in 
three consecutive functional runs of 118 volumes each. In the older 
sample, the task was completed in one functional run of 276 volumes. 

2.5. Imaging analysis 

Preprocessing: We used FSL_motion_outliers (FSLv5.0.8, FMRIB’s 
Software Library, https://fsl.fmrib.ox.ac.uk/fsl/; Jenkinson et al., 2012) 
to determine the maximum volume-to-volume framewise displacement 
for each run. Thirty-five participants with a maximum framewise 
displacement greater than the voxel width (3.1 mm in younger sample, 
2.75 mm in older sample) were excluded from analysis to limit 
contamination of group results by motion spike-induced signal artifacts. 

Functional imaging data were then processed with the SPM12 
package (v6906; Wellcome Department of Imaging Neuroscience, Lon-
don, UK; https://www.fil.ion.ucl.ac.uk/spm/software/spm12/) 
running on MATLAB (R2016b). Images were motion-corrected, 
normalized to the Montreal Neurological Institute (MNI) template, and 
smoothed with an 8 mm full-width half-maximum Gaussian kernel. 
Additionally, we screened functional images using Artifact Detection 
Tools (ART) (http://www.nitrc.org/projects/artifact_detect/) to 

identify outlier volumes in pre-processed data. Specifically, an outlier 
volume was identified if (1) the global mean intensity of the volume was 
more than 3 SD from the mean volume intensity of the run, or (2) 
volume-to-volume difference of a composite motion parameter excee-
ded 0.5 mm. Eight participants for whom > 20 % of their volumes were 
identified as outliers were excluded from analysis. Outlier volumes were 
later “censored” in individual-level models using spike regression as part 
of our denoising approach (Satterthwaite et al., 2013), to mitigate the 
impact of in-scanner head motion spikes on subsequent analyses. 

Regions of interest (ROIs): Nodes of the three networks were defined 
using the network atlas in the CONN toolbox (www.nitrc.org/projects/ 
conn, RRID:SCR_009550; Whitfield-Gabrieli and Nieto-Castanon, 2012). 
These ROIs were derived from an ICA decomposition of the Human 
Connectome Project (n = 497 dataset). We included all regions of in-
terest that were available for each network. The default mode network 
included four regions of interest: medial PFC (mPFC), posterior cingu-
late cortex (PCC), and left and right angular gyrus (lAG, rAG). The 
salience network included seven regions of interest: anterior cingulate 
cortex (ACC), left and right anterior insula (laINS, raINS), left and right 
supramarginal gyrus (lSMG, rSMG), and left and right inferior frontal 
cortex (lIFC, rIFC). The frontoparietal network included four regions of 
interest: left and right dorsolateral prefrontal cortex (lPFC, rPFC) and 
left and right posterior parietal cortex (lPar, rPar). 

Individual-level models: Network connectivity strength values were 
calculated using CONN toolbox. For participants in the younger sample, 
who completed three task runs, the two runs with the lowest average 
framewise displacement were included in the individual-level models 
(as done in Pruitt et al., 2021). We made this choice, rather than using 
the first two runs, to reduce the group differences in motion. This 
approach brings the average framewise displacement of the children 
(the highest motion age group) in line with the other age groups. 

For each participant, average timeseries were extracted across all 
voxels within each ROI. Effects of nuisance covariates were regressed 
out of the timeseries (“denoising”): these included average BOLD signal 
extracted from subject-level white matter mask, average BOLD signal 
extracted from subject-level cerebrospinal fluid mask, 6 motion pa-
rameters (3 translation and 3 rotation), outliers (1 per outlier, as iden-
tified by ART), and a regressor modeling the onset times of task stimuli. 
Each encoding event was modeled as a block with the duration of the 
visual stimulus (3 or 3.4 s) and convolved with a canonical model of the 
hemodynamic response function. This task regressor was included to 
remove specific task effects and account for correlation between ROI 
timeseries that may arise from co-activation to the stimuli. Following 
removal of the task effects, correlation among the residual timeseries are 
thought to reflect background functional connectivity; that is, connec-
tivity in response to the general demands of the task rather than in 
response to the stimuli themselves (Al-Aidroos et al., 2012; 
Norman-Haignere et al., 2012). A high-pass filter was applied to remove 
frequencies below 0.008 Hz. 

Pairwise correlations were Fisher-transformed to Z-values. Within- 
network connectivity strength was calculated as the average pairwise 

Table 2 
Participant demographics by age group. Gender distribution and IQ differ across age groups, with late-life adults having a higher proportion of women than children, 
and lower IQ than children and young adults. Note: Mid-life and late-life adults completed a different IQ test (Wechsler Abbreviated Scale of Intelligence-II) than 
children, adolescents, and young adults (Kaufman Brief Intelligence Test-II). Age group differences in IQ may therefore reflect, in part, differences between the tests 
rather than true differences in IQ between age groups.  

Participant characteristics Children Adolescents Young Adults Mid-life Late-life Test-statistic p 

Sample Size 19 29 30 18 20   
Age 9.84 ± 1.46 15.21 ± 1.32 21.10 ± 2.14 59.89 ± 5.13 72.5 ± 5.44   
Gender (F/M) 9/10 16/13 16/14 12/6 18/2 9.970☨ 0.041 
IQ 109.14 ± 13.92 105.18 ± 14.21 110.63 ± 12.04 98.78 ± 12.43 97.05 ± 11.71 5.027☨☨ 0.001 
% outlier volumes 5.33 ± 3.88 4.28 ± 2.92 3.61 ± 2.19 8.47 ± 6.05 8.52 ± 5.47 7.370☨☨ < 0.001 
Mean framewise displacement (mm) 0.40 ± 0.27 0.19 ± 0.12 0.17 ± 0.10 0.24 ± 0.16 0.30 ± 0.20 9.364☨☨ < 0.001 
☨ chi-squared  
☨☨ F   
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connectivity among nodes within a network. For example, a partici-
pant’s within-DMN value would be the average of the pairwise mPFC- 
PCC, mPFC-lAG, mPFC- rAG, PCC-lAG, PCC-rAG, and lAG-rAG connec-
tivity. between-network connectivity strength was calculated as the 
average pairwise connectivity between all nodes of the respective 
networks. 

Group analyses: Group analyses were computed using SPSS (v25, 
IBM). We calculated effects of age group on network connectivity 
strength using univariate general linear models with gender, mean 
framewise displacement, and percent of outlier volumes as covariates. 
Given that participants had different numbers of outlier volumes 
censored in their individual-level models, percent of outlier volumes 
was included in group-level models to account for the differential loss of 
temporal degrees of freedom in each participant’s individual-level 
model. We also investigated the overall predictive ability of the 
network connectivity strength values for recognition performance using 
separate univariate general linear models that also included gender, age 
group and IQ. 

3. Results 

In meeting our study objective, we characterized age-related pat-
terns of within- and between-network background connectivity during a 
visual memory-encoding task, for five age groups across the lifespan. 
Post hoc pairwise comparisons were corrected for multiple comparisons 
using the Bonferroni approach. 

3.1. Within-network background connectivity 

3.1.1. Default mode network 
We did not find a significant effect of age group on within-network 

DMN connectivity strength, F(4107) = 1.630, p = 0.172, partial η2
P =

0.057 (Fig. 1a), controlling for gender, mean framewise displacement, 
and percent of outlier volumes. 

3.1.2. Salience network 
We found a significant effect of age group on within-network SN 

connectivity strength, F(4107) = 13.792, p < 0.001, partial η2
P = 0.340 

(Fig. 1b), controlling for gender, mean framewise displacement, and 
percent of outlier volumes. Post hoc pairwise comparisons of estimated 
marginal means revealed mid-life and late-life adults demonstrated 
attenuated within-salience network connectivity relative to children, 
adolescents, and young adults. 

3.1.3. Frontoparietal network 
We found a significant effect of age group on within-network FPN 

connectivity strength, F(4107) = 4.358, p = 0.003, partial η2
P = 0.140 

(Fig. 1c), controlling for gender, mean framewise displacement, and 
percent of outlier volumes. Post hoc pairwise comparisons of estimated 
marginal means revealed late-life adults demonstrated attenuated 
within-frontoparietal network connectivity relative to children and 
young adults. 

3.2. Between-network background connectivity 

DMN-SN: We found a significant effect of age group on DMN-SN 
between-network connectivity strength, F(4107) = 20.604, p < 0.001, 
η2

P = 0.435 (Fig. 2a), controlling for gender, mean framewise displace-
ment, and percent of outlier volumes. Post hoc pairwise comparisons of 
estimated marginal means revealed mid-life and late-life adults 
demonstrated more positively correlated DMN-SN between-network 
connectivity relative to the children, adolescents and young adults. 

FPN-SN: We found a significant effect of age group on FPN-SN be-
tween-network connectivity strength, F(4107) = 3.354, p = 0.013, η2

P 
= 0.111 (Fig. 2b), controlling for gender, mean framewise displacement, 
and percent of outlier volumes. Post hoc pairwise comparisons of 

estimated marginal means revealed mid-life adults demonstrated more 
positively correlated FPN-SN between-network connectivity relative to 
the children and young adults. 

DMN-FPN: We found a significant effect of age group on DMN-FPN 
between-network connectivity strength, F(4107) = 8.270, p < 0.001, 
η2

P = 0.236 (Fig. 2c), controlling for gender, mean framewise displace-
ment, and percent of outlier volumes. Post hoc pairwise comparisons of 
estimated marginal means revealed mid-life and late-life adults 
demonstrated more positively correlated DMN-FPN between-network 
connectivity relative to the adolescents and young adults. Furthermore, 
mid-life adults demonstrated more positively correlated DMN-FPN be-
tween-network connectivity relative to children. 

3.3. Exploratory approaches to examining effect of age on network 
background connectivity 

We further investigated the question of age-effect in background 
connectivity using two exploratory approaches. First, we tested a two- 
group comparison, comparing background network connectivity in the 
younger sample (ages 8–25) and older sample (ages 45–85), rather than 
using five age-groups. Second, we ran separate within-group analyses 
for the younger and older samples which used age as a continuous 
variable. The results of these analyses are in line with the findings using 
five age-groups, and can be found in Supplementary Materials. 

3.4. Network background connectivity associations with recognition 
accuracy 

None of the six connectivity measures associated with recognition 
accuracy after controlling for age group, gender, and IQ (all p-values >
0.25, η2

P < 0.012). 

4. Discussion 

In a sample which included participants ranging from children to 
older adults, we examined background functional connectivity within 
and between three large-scale cognitive brain networks – the default 
mode network (DMN), salience network (SN) and frontoparietal 
network (FPN) – in the context of a visual encoding task. In our sample 
there was a significant effect of age-group on within-network connec-
tivity values in the SN and FPN, but not the DMN. In addition, there was 
a significant effect of age-group on between-network connectivity values 
for DMN-SN and DMN-FPN. So, DMN connectivity with other cognitive 
brain networks is significantly greater in the older compared to the 
younger groups, in line with previous observations of reduced network 
segregation in aging (Chan et al., 2014; Geerligs et al., 2015a; Song 
et al., 2014), even though within-DMN connectivity during memory 
encoding may be maintained during older adulthood. We did not find 
any association between network connectivity measures and memory 
performance. In the context of previous work, the pattern of 
within-DMN connectivity across age groups during memory encoding 
highlights that background connectivity represents a complementary 
measure to resting-state connectivity, as each shows different 
age-related patterns and provides a glimpse of network connectivity 
during a particular state. 

The age-related differences in frontoparietal and salience within- 
network background connectivity are in line with lifespan patterns of 
connectivity in these networks more generally, including during resting- 
state (Geerligs et al., 2015a; Onoda et al., 2012), with late-life adults 
showing lower connectivity than younger groups. Contrary to our hy-
pothesis, we did not observe age-related differences in default mode 
within-network background connectivity. This finding stands in contrast 
to the resting-state literature, which robustly demonstrates relatively 
reduced within-DMN connectivity with greater age (Andrews-Hanna 
et al., 2007; Betzel et al., 2014; Tomasi and Volkow, 2012). However, 
our finding is in line with a previous investigation of task background 
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Fig. 1. Within-network Background Connectivity by Age Group. a) Default Mode Network. Left: Regions of interest for the DMN are displayed in red. Right: There 
was not a significant effect of age group on within-network DMN connectivity. b) Salience Network. Left: Regions of interest for the SN are displayed in blue. Right: 
There was a significant effect of age group on within-SN connectivity. Within-SN connectivity was significantly attenuated in mid-life and late-life adults compared to 
children, adolescents and young adults. c) Frontoparietal Network. Left: Regions of interest for the FPN are displayed in green. Right: There was a significant effect of 
age group on within-FPN connectivity. Within-FPN connectivity was significantly attenuated in late-life adults compared to children and young adults. 
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connectivity in aging (Grady et al., 2016), which likewise did not find a 
difference in within-DMN task background connectivity between a 
group of young adults and older adults, despite seeing such a difference 
for resting-state connectivity in the same sample. The authors suggest 
this may be related to previous observations of lower reductions in DMN 
activity in older compared to younger adults during active task perfor-
mance. Another consideration is that the memory encoding task used in 

the current study uniquely engages regions in the DMN, which demon-
strate a negative subsequent memory effect (see Pruitt et al., 2021). In 
contrast, regions of the FPN and SN show little overlap with positive or 
negative subsequent memory effects. Engagement of these regions by 
general task demands may prevent the lower DMN connectivity seen 
during resting-state in older adults. As SN and FPN are not similarly 
engaged by memory encoding task demands, this may be why these 
networks do show age-related differences in background connectivity. 
Our observation of greater between-network connectivity in older 
adults, specifically DMN-SN and DMN-FPN, is in line with age-related 
patterns of resting-state connectivity. Taken with the within-network 
findings, the higher between-network background connectivity in 
older adults suggests less “distinct” SN and FPN, reflective of an overall 
pattern of de-differentiation (Dennis and Cabeza, 2011; Park et al., 
2004) in these networks. 

We did not observe hypothesized group differences in background 
connectivity between children and young adults. These differences were 
expected based on previous evidence of increasing within-network (Fair 
et al., 2008) and decreasing between-network (Gu et al., 2015) 
resting-state functional connectivity across development, which 
together signify a more general trend of increased network segregation. 
In considering why we did not observe these developmental effects, one 
possibility is that there is a developmental effect in background con-
nectivity that we were not able to detect with our approach. With this in 
mind, we tried an alternative approach: exploratory analyses conducted 
within the younger (age 8–25) and older (45− 85) samples separately 
used age as a continuous variable rather than age groups. These analyses 
also did not find any statistically-significant associations of age and 
background connectivity across development (see Supplementary Ma-
terials). Whether age is modeled by group or continuously, it may be 
that any developmental effect in background connectivity is sufficiently 
subtle that we are not able to detect it with our sample size. Another 
possibility is that there truly is not a meaningful developmental effect of 
background connectivity within and between these networks. It is un-
clear why this may be the case but could potentially reflect that network 
organization which facilitates the meeting of task demands matures 
earlier in life than network organization measured using resting-state 
fMRI. Replication and further exploration will be valuable in better 
understanding this finding. 

Recognition performance was not associated with within-DMN 
background connectivity during memory encoding, nor with any other 
measure of within- or between-network background connectivity. A 
plausible explanation for the lack of such association is that task-evoked 
responses that contain meaningful information related to subsequent 
memory outcomes are lost in task background connectivity, in which 
those task-evoked responses are regressed out. Although measures of 
task-evoked response are often associated with task performance, 
including in this sample and task (Pruitt et al., 2021), previous in-
vestigations into the association between task background connectivity 
and task performance provide mixed evidence for such a link. Grady 
et al. (2016) found that frontoparietal control (including regions from 
the FPN and SN) task background connectivity to other networks was 
not a predictor of task performance; performance association with DMN 
connectivity was not examined. In Duncan et al. (2014), task back-
ground functional connectivity between the hippocampal subfield CA1 
and the ventral tegmental area was associated with delayed, but not 
immediate, memory retrieval performance. Our paradigm tested effects 
at the early stages of memory formation thus providing converging ev-
idence that measures of background connectivity are not associated with 
early mnemonic processes, but may be associated with mnemonic pro-
cesses that unfold over longer temporal scales. 

There are limitations to the current study, which merit consideration 
when evaluating the presented findings. First, this work uses a cross- 
sectional approach to examine age-related patterns. A major goal of 
lifespan research is to evaluate how individuals change across the stages 
of life, and this goal requires a longitudinal approach. The current work, 

Fig. 2. Between-network Background Connectivity by Age Group. a) Default 
Mode and Salience Networks. There was a significant effect of age group on 
DMN-SN between-network connectivity. Mid-life and late-life adults showed 
more positive connectivity relative to children, adolescents, and young adults. 
b) Frontoparietal and Salience Networks: There was a significant effect of age 
group on FPN-SN between-network connectivity. Mid-life adults showed more 
positive connectivity relative to children and young adults. c) Default Mode and 
Frontoparietal Networks. There was a significant effect of age group on DMN- 
FPN between-network connectivity. Mid-life and late-life adults showed more 
positive connectivity relative to adolescents and young adults. Furthermore, 
mid-life adults showed more positive connectivity relative to children. 
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therefore, is limited to characterizing differences between groups 
(higher, lower, or no difference in connectivity) rather than changes 
across time (increase, decrease, or maintenance of connectivity). Sec-
ond, while our sample allows us to characterize age-related patterns of 
connectivity across several age groups, it does not include adults be-
tween the ages of 25–45. This limits our ability to determine at what 
point in adulthood we begin to see, for example, lower within-SN con-
nectivity. Inclusion of this age group in future research will allow for 
greater specificity regarding when these observed differences begin to 
emerge. Third, resting-state fMRI data is available for only a small 
proportion of our sample, meaning that we are not able to directly 
compare background task connectivity and resting-state connectivity in 
our participants, which would provide further insight into changes in 
network connectivity during task that are not directly related to task 
stimuli, as well as how task/rest network modulation differs across the 
lifespan. This too is a valuable objective for future research. Fourth, we 
used different tests to measure IQ in our younger sample (Kaufman Brief 
Intelligence Scale-II) and older sample (Wechsler Abbreviated Scale of 
Intelligence-II). The observed age group differences in IQ may therefore 
reflect, in part, differences between the two tests rather than true dif-
ferences in IQ. IQ was also included as a covariate in regression models 
with memory performance as the dependent variable, and so this po-
tential bias in scores between participants must also be considered when 
interpreting these results. Despite these concerns, we felt the analyses 
examining associations with cognitive performance were stronger with a 
potentially-biased measure of IQ, than without controlling for these 
individual differences at all. Fifth, our regions of interest were selected 
based on a specific brain network parcellation, the network atlas in 
CONN toolbox, which is derived from an ICA analysis of the Human 
Connectome Project data. Intrinsic networks can be spatially defined in 
a variety of ways and different definitions may include or exclude 
particular regions. In interpreting any results which use a particular 
atlas or parcellation, it is important to consider that findings may differ 
if another parcellation were used. Sixth, while study procedures were 
largely harmonized between the younger and older samples, there are 
some differences that merit mention in both fMRI acquisition (repetition 
time; acquired voxel size) and task procedures (stimulus duration, 
wording of instructions). Despite these minor methodological differ-
ences, we observed expected age-effect patterns in task performance and 
neural task effects in expected regions (Pruitt et al., 2021). However, 
confidence in our current findings could be increased by replication in a 
lifespan sample with identical study protocols. 

In conclusion, this work utilizes a unique lifespan sample to reveal 
age-related patterns of within- and between-DMN background connec-
tivity during memory encoding. We demonstrate significant effects of 
age group within salience network and frontoparietal network connec-
tivity, as well as connectivity between the three networks. In the context 
of previous work, our results suggest that background connectivity may 
be less predictive of task performance than task-evoked response. 
However, the similarity of within-DMN background connectivity across 
age groups, in contrast to previous resting-state findings, further em-
phasizes that measures of task connectivity provide additional insight 
into cognitive aging beyond that provided by resting-state. Furthermore, 
the lack of observed developmental effects in background connectivity, 
in contrast to previous resting-state findings of age-related network 
segregation, merits further investigation. 
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